Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203329

RESUMO

The BCL-2-associated athanogene (BAG) family is a multifunctional group of co-chaperones that are evolutionarily conserved from yeast to mammals. In addition to their common BAG domain, these proteins contain, in their sequences, many specific domains/motifs required for their various functions in cellular quality control, such as autophagy, apoptosis, and proteasomal degradation of misfolded proteins. The BAG family includes six members (BAG1 to BAG6). Recent studies reported their roles in autophagy and/or mitophagy through interaction with the autophagic machinery (LC3, Beclin 1, P62) or with the PINK1/Parkin signaling pathway. This review describes the mechanisms underlying BAG family member functions in autophagy and mitophagy and the consequences in physiopathology.


Assuntos
Autofagia , Mitofagia , Chaperonas Moleculares , Animais , Mamíferos/metabolismo , Chaperonas Moleculares/genética , Família Multigênica , Saccharomyces cerevisiae/metabolismo
2.
FASEB J ; 35(2): e21361, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522017

RESUMO

Bcl-2-associated athanogen-6 (BAG6) is a nucleocytoplasmic shuttling protein involved in protein quality control. We previously demonstrated that BAG6 is essential for autophagy by regulating the intracellular localization of the acetyltransferase EP300, and thus, modifying accessibility to its substrates (TP53 in the nucleus and autophagy-related proteins in the cytoplasm). Here, we investigated BAG6 localization and function in the cytoplasm. First, we demonstrated that BAG6 is localized in the mitochondria. Specifically, BAG6 is expressed in the mitochondrial matrix under basal conditions, and translocates to the outer mitochondrial membrane after mitochondrial depolarization with carbonyl cyanide m-chlorophenyl hydrazine, a mitochondrial uncoupler that induces mitophagy. In SW480 cells, the deletion of BAG6 expression abrogates its ability to induce mitophagy and PINK1 accumulation. On the reverse, its ectopic expression in LoVo colon cancer cells, which do not express endogenous BAG6, reduces the size of the mitochondria, induces mitophagy, leads to the activation of the PINK1/PARKIN pathway and to the phospho-ubiquitination of mitochondrial proteins. Finally, BAG6 contains two LIR (LC3-interacting Region) domains specifically found in receptors for selective autophagy and responsible for the interaction with LC3 and for autophagosome selectivity. Site-directed mutagenesis showed that BAG6 requires wild-type LIRs domains for its ability to stimulate mitophagy. In conclusion, we propose that BAG6 is a novel mitophagy receptor or adaptor that induces PINK1/PARKIN signaling and mitophagy in a LIR-dependent manner.


Assuntos
Mitofagia , Chaperonas Moleculares/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
3.
Autophagy ; 17(9): 2465-2474, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33073673

RESUMO

The immunodeficiency observed in HIV-1-infected patients is mainly due to uninfected bystander CD4+ T lymphocyte cell death. The viral envelope glycoproteins (Env), expressed at the surface of infected cells, play a key role in this process. Env triggers macroautophagy/autophagy, a process necessary for subsequent apoptosis, and the production of reactive oxygen species (ROS) in bystander CD4+ T cells. Here, we demonstrate that Env-induced oxidative stress is responsible for their death by apoptosis. Moreover, we report that peroxisomes, organelles involved in the control of oxidative stress, are targeted by Env-mediated autophagy. Indeed, we observe a selective autophagy-dependent decrease in the expression of peroxisomal proteins, CAT and PEX14, upon Env exposure; the downregulation of either BECN1 or SQSTM1/p62 restores their expression levels. Fluorescence studies allowed us to conclude that Env-mediated autophagy degrades these entire organelles and specifically the mature ones. Together, our results on Env-induced pexophagy provide new clues on HIV-1-induced immunodeficiency.Abbreviations: Ab: antibodies; AF: auranofin; AP: anti-proteases; ART: antiretroviral therapy; BafA1: bafilomycin A1; BECN1: beclin 1; CAT: catalase; CD4: CD4 molecule; CXCR4: C-X-C motif chemokine receptor 4; DHR123: dihydrorhodamine 123; Env: HIV-1 envelope glycoproteins; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GFP-SKL: GFP-serine-lysine-leucine; HEK: human embryonic kidney; HIV-1: type 1 human immunodeficiency virus; HTRF: homogeneous time resolved fluorescence; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NAC: N-acetyl-cysteine; PARP: poly(ADP-ribose) polymerase; PEX: peroxin; ROS: reactive oxygen species; siRNA: small interfering ribonucleic acid; SQSTM1/p62: sequestosome 1.


Assuntos
HIV-1 , Autofagia , Linfócitos T CD4-Positivos , Morte Celular , Humanos , Macroautofagia , Estresse Oxidativo , Linfócitos T
4.
Med Sci (Paris) ; 33(3): 328-334, 2017 Mar.
Artigo em Francês | MEDLINE | ID: mdl-28367821

RESUMO

Autophagy is a self-cannibalism process essential for tissue homeostasis, which can be activated following different environmental stressful conditions. In normal cells, autophagy could act as a brake to prevent tumorigenesis, but cancer cells are able to hijack this process to their own benefit, to promote tumor growth and/or tumor resistance to anti-cancer therapies. Scientists and clinicians attempt to modulate this process to improve therapies, using autophagy inhibitors or activators, some of them being tested currently in clinical trials against several types of tumors. Thus, it appears that autophagy is at the center of a showdown between cancer cells and anti-cancer therapies. In this review, we focus on the mechanisms by which autophagy could be either the yin or the yang of cancers.


Assuntos
Autofagia/fisiologia , Transformação Celular Neoplásica , Neoplasias/patologia , Animais , Sobrevivência Celular , Transformação Celular Neoplásica/patologia , Humanos
5.
Oncotarget ; 6(29): 28084-103, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26183398

RESUMO

The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner.


Assuntos
Neoplasias da Mama/genética , Catepsina D/genética , Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Catepsina D/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Células MCF-7 , Microscopia de Fluorescência , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo , Ligação Proteica , Interferência de RNA , Receptores de Estrogênio/metabolismo , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
6.
Autophagy ; 10(7): 1341-2, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24852146

RESUMO

We recently reported that BAG6/BAT3 (BCL2-associated athanogene 6) is essential for basal and starvation-induced autophagy in E18.5 bag6(-/-) mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of the EP300/p300-dependent acetylation of TRP53 and autophagy-related (ATG) proteins. We observed that BAG6 increases TRP53 acetylation during starvation and pro-autophagic TRP53-target gene expression. BAG6 also decreases the EP300 dependent-acetylation of ATG5, ATG7, and LC3-I, posttranslational modifications that inhibit autophagy. In addition, in the absence of BAG6 or when using a mutant of BAG6 exclusively located in the cytoplasm, autophagy is inhibited, ATG7 is hyperacetylated, TRP53 acetylation is abrogated, and EP300 accumulates in the cytoplasm indicating that BAG6 is involved in the regulation of the nuclear localization of EP300. We also reported that the interaction between BAG6 and EP300 occurs in the cytoplasm rather than the nucleus. Moreover, during starvation, EP300 is transported to the nucleus in a BAG6-dependent manner. We concluded that BAG6 regulates autophagy by controlling the localization of EP300 and its accessibility to nuclear (TRP53) and cytoplasmic (ATGs) substrates.


Assuntos
Autofagia , Proteína p300 Associada a E1A/metabolismo , Espaço Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Acetilação , Animais , Camundongos , Modelos Biológicos , Transporte Proteico , Proteína Supressora de Tumor p53/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(11): 4115-20, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591579

RESUMO

Autophagy is regulated by posttranslational modifications, including acetylation. Here we show that HLA-B-associated transcript 3 (BAT3) is essential for basal and starvation-induced autophagy in embryonic day 18.5 BAT3(-/-) mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of p300-dependent acetylation of p53 and ATG7. Specifically, BAT3 increases p53 acetylation and proautophagic p53 target gene expression, while limiting p300-dependent acetylation of ATG7, a mechanism known to inhibit autophagy. In the absence of BAT3 or when BAT3 is located exclusively in the cytosol, autophagy is abrogated, ATG7 is hyperacetylated, p53 acetylation is abolished, and p300 accumulates in the cytosol, indicating that BAT3 regulates the nuclear localization of p300. In addition, the interaction between BAT3 and p300 is stronger in the cytosol than in the nucleus and, during starvation, the level of p300 decreases in the cytosol but increases in the nucleus only in the presence of BAT3. We conclude that BAT3 tightly controls autophagy by modulating p300 intracellular localization, affecting the accessibility of p300 to its substrates, p53 and ATG7.


Assuntos
Autofagia/fisiologia , Proteína p300 Associada a E1A/metabolismo , Embrião de Mamíferos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Fracionamento Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Primers do DNA/genética , Embrião de Mamíferos/metabolismo , Imunoprecipitação , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase em Tempo Real
8.
Autophagy ; 8(7): 1098-112, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22647487

RESUMO

Recently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Camptotecina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteína Supressora de Tumor p53/deficiência , Camptotecina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Irinotecano , Proteína Supressora de Tumor p53/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
9.
J Cell Sci ; 123(Pt 19): 3336-46, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20826454

RESUMO

Interactions between cancer cells and fibroblasts are crucial in cancer progression. We have previously shown that the aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer that is overexpressed and highly secreted by breast cancer cells, triggers mouse embryonic fibroblast outgrowth via a paracrine loop. Here, we show the requirement of secreted cath-D for human mammary fibroblast outgrowth using a three-dimensional co-culture assay with breast cancer cells that do or do not secrete pro-cath-D. Interestingly, proteolytically-inactive pro-cath-D remains mitogenic, indicating a mechanism involving protein-protein interaction. We identify the low-density lipoprotein (LDL) receptor-related protein-1, LRP1, as a novel binding partner for pro-cath-D in fibroblasts. Pro-cath-D binds to residues 349-394 of the ß chain of LRP1, and is the first ligand of the extracellular domain of LRP1ß to be identified. We show that pro-cath-D interacts with LRP1ß in cellulo. Interaction occurs at the cell surface, and overexpressed LRP1ß directs pro-cath-D to the lipid rafts. Our results reveal that the ability of secreted pro-cath-D to promote human mammary fibroblast outgrowth depends on LRP1 expression, suggesting that pro-cath-D-LRP1ß interaction plays a functional role in the outgrowth of fibroblasts. Overall, our findings strongly suggest that pro-cath-D secreted by epithelial cancer cells promotes fibroblast outgrowth in a paracrine LRP1-dependent manner in the breast tumor microenvironment.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Catepsina D/metabolismo , Precursores Enzimáticos/metabolismo , Fibroblastos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Animais , Antígenos CD/genética , Neoplasias da Mama/patologia , Carcinoma/patologia , Processos de Crescimento Celular , Linhagem Celular Transformada , Técnicas de Cocultura , Feminino , Fibroblastos/patologia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Microdomínios da Membrana/genética , Camundongos , Comunicação Parácrina , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , RNA Interferente Pequeno/genética
10.
J Biol Chem ; 285(31): 24184-94, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20484055

RESUMO

The molecular mechanisms underlying microtubule participation in autophagy are not known. In this study, we show that starvation-induced autophagosome formation requires the most dynamic microtubule subset. Upon nutrient deprivation, labile microtubules specifically recruit markers of autophagosome formation like class III-phosphatidylinositol kinase, WIPI-1, the Atg12-Atg5 conjugate, and LC3-I, whereas mature autophagosomes may bind to stable microtubules. We further found that upon nutrient deprivation, tubulin acetylation increases both in labile and stable microtubules and is required to allow autophagy stimulation. Tubulin hyperacetylation on lysine 40 enhances kinesin-1 and JIP-1 recruitment on microtubules and allows JNK phosphorylation and activation. JNK, in turn, triggers the release of Beclin 1 from Bcl-2-Beclin 1 complexes and its recruitment on microtubules where it may initiate autophagosome formation. Finally, although kinesin-1 functions to carry autophagosomes in basal conditions, it is not involved in motoring autophagosomes after nutrient deprivation. Our results show that the dynamics of microtubules and tubulin post-translational modifications play a major role in the regulation of starvation-induced autophagy.


Assuntos
Autofagia , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Acetilação , Proteínas Reguladoras de Apoptose/química , Proteína Beclina-1 , Dineínas/química , Células HeLa , Humanos , Cinesinas/química , Lisina/química , Proteínas de Membrana/química , Modelos Biológicos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
11.
Biochimie ; 92(11): 1635-43, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20493920

RESUMO

The lysosomal aspartic protease cathepsin D (cath-D) is overexpressed and hyper-secreted by epithelial breast cancer cells. This protease is an independent marker of poor prognosis in breast cancer as it is correlated with the incidence of clinical metastasis. In normal cells, cath-D is localized in intracellular vesicles (lysosomes and endosomes). In cancer cells, overexpressed cath-D accumulates in cells, where it may affect their degradative capacities, and the pro-enzyme is hyper-secreted in the tumor micro-environment. In addition, during apoptosis, lysosomal cath-D is released into the cytosol, where it may interact with and/or cleave pro-apoptotic, anti-apoptotic, or nuclear proteins. Several studies have shown that cath-D affects various different steps in tumor progression and metastasis. Cath-D stimulates cancer cell growth in an autocrine manner, and also cath-D plays a crucial paracrine role in the tumor micro-environment by stimulating fibroblast outgrowth and tumor angiogenesis. A mutant D231N-cath-D, which is devoid of catalytic activity, remained mitogenic, indicating an additional action of cath-D by protein-protein interaction. Targeting cath-D in cancer may require the use of inhibitors of its catalytic activity, but also the development of new tools to inhibit its protein binding functions. Thus, elucidation of the mechanism of action of cath-D is crucial if an appropriate strategy is to be developed to target this protease in cancer. The discovery of new physiological substrates of cath-D using proteomic approaches can be expected to generate new critical targets. The aim of this review is to describe the roles of the cath-D protease in cancer progression and metastasis, as well as its function in apoptosis, and to discuss how it can be targeted in cancer by inhibiting its proteolytic activity and/or its binding protein activity.


Assuntos
Biocatálise , Catepsina D/metabolismo , Animais , Apoptose , Biocatálise/efeitos dos fármacos , Catepsina D/antagonistas & inibidores , Catepsina D/química , Regulação Enzimológica da Expressão Gênica , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos
12.
Autophagy ; 5(4): 558-60, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19337026

RESUMO

Ceramide is a sphingolipid bioactive molecule that induces apoptosis and other forms of cell death, and triggers macroautophagy (referred to below as autophagy). Like amino acid starvation, ceramide triggers autophagy by interfering with the mTOR-signaling pathway, and by dissociating the Beclin 1:Bcl-2 complex in a c-Jun N-terminal kinase 1 (JNK1)-mediated Bcl-2 phosphorylation-dependent manner. Dissociation of the Beclin 1:Bcl-2 complex, and the subsequent stimulation of autophagy have been observed in various contexts in which the cellular level of long-chain ceramides was increased. It is notable that the conversion of short-chain ceramides (C(2)-ceramide and C(6)-ceramide) into long-chain ceramide via the activity of ceramide synthase is required to trigger autophagy. The dissociation of the Beclin 1:Bcl-2 complex has also been observed in response to tamoxifen and PDMP (an inhibitor of the enzyme that converts ceramide to glucosylceramide), drugs that increase the intracellular level of long-chain ceramides. However, and in contrast to starvation, overexpression of Bcl-2 does not blunt ceramide-induced autophagy. Whether this autophagy that is unchecked by forced dissociation of the Beclin 1:Bcl-2 complex is related to the ability of ceramide to trigger cell death remains an open question. More generally, the question of whether ceramide-induced autophagy is a dedicated cell death mechanism deserves closer scrutiny.


Assuntos
Autofagia/efeitos dos fármacos , Ceramidas/farmacologia , Citoproteção/efeitos dos fármacos , Humanos , Modelos Biológicos
13.
J Biol Chem ; 284(5): 2719-2728, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19029119

RESUMO

Macroautophagy is a vacuolar lysosomal catabolic pathway that is stimulated during periods of nutrient starvation to preserve cell integrity. Ceramide is a bioactive sphingolipid associated with a large range of cell processes. Here we show that short-chain ceramides (C(2)-ceramide and C(6)-ceramide) and stimulation of the de novo ceramide synthesis by tamoxifen induce the dissociation of the complex formed between the autophagy protein Beclin 1 and the anti-apoptotic protein Bcl-2. This dissociation is required for macroautophagy to be induced either in response to ceramide or to starvation. Three potential phosphorylation sites, Thr(69), Ser(70), and Ser(87), located in the non-structural N-terminal loop of Bcl-2, play major roles in the dissociation of Bcl-2 from Beclin 1. We further show that activation of c-Jun N-terminal protein kinase 1 by ceramide is required both to phosphorylate Bcl-2 and to stimulate macroautophagy. These findings reveal a new aspect of sphingolipid signaling in up-regulating a major cell process involved in cell adaptation to stress.


Assuntos
Autofagia/fisiologia , Ceramidas/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Western Blotting , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Fosforilação
14.
Mol Cell ; 30(6): 678-88, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18570871

RESUMO

Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the antiapoptotic protein, Bcl-2, binds to Beclin 1 during nonstarvation conditions and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the nonstructured loop; Bcl-2 dissociation from Beclin 1; and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing nonstructured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multisite phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.


Assuntos
Autofagia/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Inanição/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Sítios de Ligação , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Cinética , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Virais/metabolismo
15.
Biochimie ; 90(2): 313-23, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17928127

RESUMO

Macroautophagy or autophagy is a vacuolar degradative pathway terminating in the lysosomal compartment after forming a cytoplasmic vacuole or autophagosome that engulfs macromolecules and organelles. The original discovery that ATG (AuTophaGy related) genes in yeast are involved in the formation of autophagosomes has greatly increased our knowledge of the molecular basis of autophagy, and its role in cell function that extends far beyond non-selective degradation. The regulation of autophagy by signaling pathways overlaps the control of cell growth, proliferation, cell survival and death. The evolutionarily conserved TOR (Target of Rapamycin) kinase complex 1 plays an important role upstream of the Atg1 complex in the control of autophagy by growth factors, nutrients, calcium signaling and in response to stress situations, including hypoxia, oxidative stress and low energy. The Beclin 1 (Atg6) complex, which is involved in the initial step of autophagosome formation, is directly targeted by signaling pathways. Taken together, these data suggest that multiple signaling checkpoints are involved in regulating autophagosome formation.


Assuntos
Autofagia , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteína Beclina-1 , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR
17.
Bull Cancer ; 93(5): 439-44, 2006 May.
Artigo em Francês | MEDLINE | ID: mdl-16777620

RESUMO

Macroautophagy or autophagy is a degradative pathway terminating in the lysosomal compartment after the formation of a cytoplasmic vacuole that engulfs macromolecules and organelles. The recent discovery of the molecular controls of autophagy that are common to eukaryotic cells from yeast to human suggests that the role of autophagy in cell functioning is far beyond its nonselective degradative capacity. The downregulation of autophagy observed in cancer cells is associated with tumor progression. The regulation of autophagy by signalling pathways overlaps with the control of cell growth, proliferation, cell survival and death. Two of these pathways play an important role in control of autophagy, the class I and III PI3K pathways. Several tumor suppressor genes (PTEN, TSC1 and 2, p53) involved in the class I PI3K mTOR signalling network have been shown to stimulate autophagy. In contrast, the oncoproteins involved in this network (Ras, class I PI3K and Akt) have the opposite effect. These findings, together with the discovery that Beclin 1, which forms a complex with the class III PI3K to initiate autophagy, is a tumor suppressor gene product give credibility of the idea that autophagy is a tumor suppressor mechanism. However, cancer cells sometimes mobilize autophagic capacities in response to various stimuli, suggesting that they can also exploit autophagy for their own benefit.


Assuntos
Autofagia/fisiologia , Genes Supressores de Tumor , Neoplasias/fisiopatologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Autofagia/genética , Ativação Enzimática , Humanos , Neoplasias/enzimologia , Neoplasias/etiologia , PTEN Fosfo-Hidrolase/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Proteínas Quinases/fisiologia , Serina-Treonina Quinases TOR
18.
Cancer Res ; 66(6): 2885-8, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16540632

RESUMO

Bcl-2 was the first identified cellular protein that functions as an oncogene by blocking apoptotic cell death. Beclin 1, the first identified mammalian autophagy gene product, is a haploinsufficient tumor suppressor that was originally isolated as a Bcl-2-interacting protein. We recently showed that Bcl-2 negatively regulates Beclin 1-dependent autophagy and Beclin 1-dependent autophagic cell death. These findings raise the possibility that Bcl-2 family members may function as oncogenes not only by blocking apoptosis but also by blocking autophagy.


Assuntos
Autofagia/fisiologia , Neoplasias/patologia , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Autofagia/genética , Proteína Beclina-1 , Genes bcl-2/fisiologia , Células HeLa , Humanos , Proteínas de Membrana , Neoplasias/genética , Oncogenes/fisiologia , Proteínas/genética , Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética
19.
Cell ; 122(6): 927-39, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16179260

RESUMO

Apoptosis and autophagy are both tightly regulated biological processes that play a central role in tissue homeostasis, development, and disease. The anti-apoptotic protein, Bcl-2, interacts with the evolutionarily conserved autophagy protein, Beclin 1. However, little is known about the functional significance of this interaction. Here, we show that wild-type Bcl-2 antiapoptotic proteins, but not Beclin 1 binding defective mutants of Bcl-2, inhibit Beclin 1-dependent autophagy in yeast and mammalian cells and that cardiac Bcl-2 transgenic expression inhibits autophagy in mouse heart muscle. Furthermore, Beclin 1 mutants that cannot bind to Bcl-2 induce more autophagy than wild-type Beclin 1 and, unlike wild-type Beclin 1, promote cell death. Thus, Bcl-2 not only functions as an antiapoptotic protein, but also as an antiautophagy protein via its inhibitory interaction with Beclin 1. This antiautophagy function of Bcl-2 may help maintain autophagy at levels that are compatible with cell survival, rather than cell death.


Assuntos
Autofagia/efeitos dos fármacos , Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Proteína Beclina-1 , Linhagem Celular , Retículo Endoplasmático/química , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Mitocôndrias/química , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/classificação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Inanição/prevenção & controle
20.
Autophagy ; 1(1): 46-52, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16874027

RESUMO

Atg6/Beclin 1 is an evolutionarily conserved protein family that has been shown to function in vacuolar protein sorting (VPS) in yeast; in autophagy in yeast, Drosophila, Dictyostelium, C.elegans, and mammals; and in tumor suppression in mice. Atg6/Beclin 1 is thought to function as a VPS and autophagy protein as part of a complex with Class III phosphatidylinositol 3'-kinase (PI3K)/Vps34. However, nothing is known about which domains of Atg6/Beclin 1 are required for its functional activity and binding to Vps34. We hypothesized that the most highly conserved region of human Beclin 1 spanning from amino acids 244-337 is essential for Vps34 binding, autophagy, and tumor suppressor function. To investigate this hypothesis, we evaluated the effects of wild-type and mutant beclin 1 gene transfer in autophagy-deficient MCF7 human breast carcinoma cells. We found that, unlike wild-type Beclin 1, a Beclin 1 mutant lacking aa 244-337 (Beclin 1DeltaECD), is unable to enhance starvation-induced autophagy in low Beclin 1-expressing MCF7 human breast carcinoma cells. In contrast to wild-type Beclin 1, mutant Beclin 1DeltaECD is unable to immunoprecipitate Vps34, has no Beclin 1-associated Vps34 kinase activity, and lacks tumor suppressor function in an MCF7 scid mouse xenograft tumor model. The maturation of cathepsin D, which requires intact Vps34-dependent VPS function, is comparable in autophagy-deficient low-Beclin 1 expressing MCF7 cells, autophagy-deficient MCF7 cells transfected with Beclin 1DeltaECD, and autophagy-competent MCF7 cells transfected with wild-type Beclin 1. These findings identify an evolutionarily conserved domain of Beclin 1 that is essential for Vps34 interaction, autophagy function, and tumor suppressor function. Furthermore, they suggest a connection between Beclin 1-associated Class III PI3K/Vps34-dependent autophagy, but not VPS, function and the mechanism of Beclin 1 tumor suppressor action in human breast cancer cells.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Drosophila/fisiologia , Genes Supressores de Tumor , Proteínas de Membrana/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Proteína Beclina-1 , Catepsina D/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Proteínas de Drosophila/genética , Evolução Molecular , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/genética , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transplante Heterólogo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...